EL PAPEL BIOLÓGICO DEL SILICIO EN CULTIVOS AGRÍCOLAS: SU CONTRIBUCIÓN AL CONTROL DE PLAGAS Y ENFERMEDADES
Silicio: Defensa Biológica Agrícola
DOI:
https://doi.org/10.60158/rma.v11i1.421Palabras clave:
ciclo biogeoquímico, defensa natural, fitolitos, hormesis, resistencia vegetalResumen
El silicio (Si), un oligoelemento muy disponible, se distingue por su capacidad de ser fácilmente absorbido, una elevada solubilidad y una especificidad en las plantas. Este aspecto resulta esencial, dado que siete de los diez cultivos más importantes a nivel mundial son reconocidos por su acumulación de Si y su respuesta positiva a su aplicación. Sin embargo, el avance y desarrollo de los cultivos agrícolas se ven restringidos por factores de estrés, ya sean bióticos o abióticos. El objetivo del presente análisis de información consistió en examinar la capacidad del silicio para activar las barreras físicas y bioquímicas en las plantas, proporcionando mecanismos eficaces de resistencia ante plagas y enfermedades. La incorporación de silicio en prácticas agrícolas posee un potencial significativo para contribuir a la seguridad alimentaria, al facilitar el desarrollo de cultivos optimizados en términos de producción. En consecuencia, se considera el uso estratégico del silicio como una fuente sostenible y beneficiosa en la producción agrícola, ofreciendo perspectivas prometedoras para mejorar la eficiencia y resiliencia de los sistemas agrícolas.
Citas
Acevedo, F.E., Peiffer, M., Ray, S., Tan, C.W. y Felton, G.W. (2021). Silicon-Mediated Enhancement of Herbivore Resistance in Agricultural Crops. Frontiers in Plant Science, 12, e631824. https://doi.org/10.3389/fpls.2021.631824 DOI: https://doi.org/10.3389/fpls.2021.631824
Agathokleous, E. & Calabrese, E.J. (2019). Hormesis can enhance agricultural sustainability in a changing world. Global Food Security, 20, 150-155. https://doi.org/10.1016/j.gfs.2019.02.005 DOI: https://doi.org/10.1016/j.gfs.2019.02.005
Ahammed,, G.J, & Yang, Y. (2021). Mechanisms of silicon-induced fungal disease resistance in plants. Plant Physiology and Biochemistry, 165, 200-206. https://doi.org/10.1016/j.plaphy.2021.05.031 DOI: https://doi.org/10.1016/j.plaphy.2021.05.031
Ahmad, Z., Waraich, E.A., Barutçular, C., Hossain, A., Erman, M., Çiğ, F., Gharib, H. & Sabagh, A,E.L. (2020). Enhancing drought tolerance in wheat through improving morphophysiological and antioxidants activities of plants by the supplementation of foliar silicon. Phyton-International Journal of Experimental Botany, 89(3), 529-539. https://doi.org/10.32604/phyton.2020.09143 DOI: https://doi.org/10.32604/phyton.2020.09143
Akhtar, N., Ilyas, N., Mashwani, Z.R,, Hayat, R., Yasmin, H., Noureldeen, A., Ahmad, P. (2021). Synergistic effects of plant growth promoting rhizobacteria and silicon dioxide nano-particles for amelioration of drought stress in wheat. Plant Physiology and Biochemistry, 166, 160-176. https://doi.org/10.1016/j.plaphy.2021.05.039 DOI: https://doi.org/10.1016/j.plaphy.2021.05.039
Alhousari, F. & Greger, M. (2018). Silicon and mechanisms of plant resistance to insect pests. Plants, 7(2), 1-11. https://doi.org/10.3390/plants7020033 DOI: https://doi.org/10.3390/plants7020033
Barão, L. (2023). The Use of Si-Based Fertilization to Improve Agricultural Performance. Journal of Soil Science and Plant Nutrition, 23, 1096-1108. https://doi.org/10.1007/s42729-022-01106-1 DOI: https://doi.org/10.1007/s42729-022-01106-1
Basu, S., Kumar, G., Kumari, N., Kumari, S., Shekhar, S., Kumar, S. & Rajwanshi, R. (2020). Reactive oxygen species and reactive nitrogen species induce Lysigenous aerenchyma formation through programmed cell death in rice roots under submergence. Environmental and Experimental Botany, 177, e104118. https://doi.org/10.1016/j.envexpbot.2020.104118 DOI: https://doi.org/10.1016/j.envexpbot.2020.104118
Belz, G.R. & Duke, O.S. (2022). Modelling biphasic hormetic dose responses to predict sub-NOAEL effects using plant biology as an example. Current Opinion in Toxicology, 29, 36-42. https://doi.org/10.1016/j.cotox.2022.01.003 DOI: https://doi.org/10.1016/j.cotox.2022.01.003
Bokor, B., Bokorová, S., Ondoš, S., Švubová, R., Lukačová, Z., Hýblová, M., Szemes, T., Lux, A. (2015). Ionome and expression level of Si transporter genes (Lsi1, Lsi2, and Lsi6) affected by Zn and Si interaction in maize. Environmental Science and Pollution Research, 22(9), 6800-6811. https://doi.org/10.1007/s11356-014-3876-6 DOI: https://doi.org/10.1007/s11356-014-3876-6
Brugiére, T. & Exley, C. (2017). Callose-associated silica deposition in Arabidopsis. Journal of Trace Elements in Medicine and Biology, 39, 86-90. https://doi.org/10.1016/j.jtemb.2016.08.005 DOI: https://doi.org/10.1016/j.jtemb.2016.08.005
Calegari, M.R., De-Souza, E., Mozer, J.H., Marcolin, L. & Da Fonseca, C.F. (2022). Fitólitos-Uma ferramenta para estudos de reconstituição paleoambiental. Derbyana, 43, 1-24. https://doi.org/10.14295/derb.v43.778 DOI: https://doi.org/10.14295/derb.v43.778
Cedergreen, N., Ritz, C. & Streibig, J.C. (2005). Improved empirical models describing hormesis. Environmental Toxicology and Chemistry, 24(12), 3166-3172. https://doi.org/10.1897/05-014r.1 DOI: https://doi.org/10.1897/05-014R.1
Cherif, M., Benhamou, N., Menzies, J.G. & Belanger, R.R. (1992). Silicon induced resistance in cucumber plants against Pythium ultimum. Physiological and Molecular Plant Pathology, 41, 411-425. https://doi.org/10.1016/0885-5765(92)90053-X DOI: https://doi.org/10.1016/0885-5765(92)90053-X
Cutler, G.C., Amichot, M., Benelli, G., Guedes, R.N.C., Qu, Y., Rix, R.R., Ullah, F. & Desneux, N. (2022). Hormesis and insects: Effects and interactions in agroecosystems. Science of The Total Environment, 825, e153899. https://doi.org/10.1016/J.SCITOTENV.2022.153899 DOI: https://doi.org/10.1016/j.scitotenv.2022.153899
Davison, P.G., Manrique, R.R. & Sánchez, M.G. (2009). Hormesis: antecedentes e implicaciones en los sistemas biológicos. Latin American Journal of Pharmacy, 28(6), 954-960. Recuperado el 14 de septiembre de 2023 de http://www.latamjpharm.org/trabajos/28/6/LAJOP_28_6_4_1_3441TW9DTB.pdf
Debona, D., Rodrigues, F.A. & Datnoff, L.E. (2017). Silicon’s role in abiotic and biotic plant stresses. Annual Review of Phytopathology, 55, 85-107. https://doi.org/10.1146/annurev-phyto-080516 DOI: https://doi.org/10.1146/annurev-phyto-080516-035312
De-Tombeur, F., Turner, B.L., Laliberté, E., Lambers, H., Mahy, G., Faucon, M.P., Zemunik, G. & Cornelis, J.T. (2020). Plants sustain the terrestrial silicon cycle during ecosystem retrogression. Science, 369(565), 1245-1248. https://doi.org/10.1126/ciencia.abc0393 DOI: https://doi.org/10.1126/science.abc0393
Elizabath, A., Babychan, M., Mathew, A.M. & Syriac, G.M. (2019). Application of Nanotechnology in Agriculture. International Journal of Pure y Applied Bioscience, 7(2), 131-139. https://doi.org/10.18782/2320-7051.6493 DOI: https://doi.org/10.18782/2320-7051.6493
El-Shetehy, M., Moradi, A., Maceroni, M., Reinhardt, D., Petri-Fink, A., Rothen-Rutishauser, B., Mauch, F. & Schwab, F. (2021). Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nature Nanotechnology, 16(3), 344-353. https://doi.org/10.1038/s41565-020-00812-0 DOI: https://doi.org/10.1038/s41565-020-00812-0
Erofeeva, E.A. (2022). Environmental hormesis of non-specific and specific adaptive mechanisms in plants. Science of the Total Environment, 804, e150059. https://doi.org/10.1016/j.scitotenv.2021.150059 DOI: https://doi.org/10.1016/j.scitotenv.2021.150059
Fawe, A., Menzies, J.G., Chérif, M. & Bélanger, R.R. (2001). Silicon and disease resistance in dicotyledons. In: Silicon in Agriculture. (Vol. 8, pp. 159-169). Elsevier. Nederland. https://doi.org/10.1016/S0928-3420(01)80013-6 DOI: https://doi.org/10.1016/S0928-3420(01)80013-6
Gomes, F.B., Campos-De-Moraes, J., Donizete-dos-Santos, C. & Goussain, M.M. (2005). Resistance induction in wheat plants by silicon and aphids. Ciencias Agrícolas, 62(6), 547-551. https://doi.org/10.1590/S0103-90162005000600006 DOI: https://doi.org/10.1590/S0103-90162005000600006
Gómez-Merino, F.C., Trejo-Téllez, L.I., García-Jiménez, A., Escobar-Sepúlveda, H.F. & Ramírez-Olvera, S.M. (2020). Silicon flow from root to shoot in pepper: a comprehensive in silico analysis reveals a potential linkage between gene expression and hormone signaling that stimulates plant growth and metabolism. PeerJ, 8, e10053. https://doi.org/10.7717/peerj.10053 DOI: https://doi.org/10.7717/peerj.10053
Goswami, P., Mathur, J. & Srivastava, N. (2022). Silica nanoparticles as novel sustainable approach for plant growth and crop protection. Heliyon, 8(7), e09908. https://doi.org/10.1016/j.heliyon.2022.e09908 DOI: https://doi.org/10.1016/j.heliyon.2022.e09908
Islam, W., Tayyab, M., Khalil, F., Hua, Z., Huang, Z. & Chen, H.Y.H. (2020). Silicon-mediated plant defense against pathogens and insect pests. Pesticide Biochemistry and Physiology, 168, e104641. https://doi.org/10.1016/j.pestbp.2020.104641 DOI: https://doi.org/10.1016/j.pestbp.2020.104641
James, D.G. & Grasswitz, T.R. (2005). Synthetic herbivore-induced plant olátiles increase field captures of parasitic wasps. BioControl ,50(6), 871-880. https://doi.org/10.1007/s10526-005-3313-3 DOI: https://doi.org/10.1007/s10526-005-3313-3
Kendig, L.E., Le, H.H. & Belcher, M.S. (2010). Defining hormesis: evaluation of a complex concentration response phenomenon. International Journal of Toxicology, 29(3), 235-246. https://doi.org/10.1177/1091581810363012 DOI: https://doi.org/10.1177/1091581810363012
Kráľová, K., Jampílek, J. (2022). Metal- and Metalloid-Based Nanofertilizers and Nanopesticides for Advanced Agriculture. In: Inorganic Nanopesticides and Nanofertilizers. Springer, Cham. pp. 295-361. https://doi.org/10.1007/978-3-030-94155-0_10 DOI: https://doi.org/10.1007/978-3-030-94155-0_10
Kulich, I., Vojtíková, Z., Sabol, P., Ortmannová, J., Neděla, V., Tihlaříková, E. & Zárský, V. (2018). Exocyst subunit EXO70H4 has a specific role in callose synthase secretion and silica accumulation. Plant Physiology, 176(3), 2040-2051. https://doi.org/10.1104/pp.17.01693 DOI: https://doi.org/10.1104/pp.17.01693
Kvedaras, O.L., An, M., Choi, Y.S. & Gurr, G.M. (2010). Silicon enhances natural enemy attraction and biological control through induced plant defences. Bulletin of Entomological Research, 100(3), 367-371. https://doi.org/10.1017/S0007485309990265 DOI: https://doi.org/10.1017/S0007485309990265
Li, B., Sun, L., Huang, J., Göschl, C., Shi, W., Chory, J. & Busch, W. (2019). GSNOR provides plant tolerance to iron toxicity via preventing iron-dependent nitrosative and oxidative cytotoxicity. Nature Communications, 10(1), e3896. https://doi.org/10.1038/s41467-019-11892-5 DOI: https://doi.org/10.1038/s41467-019-11892-5
Liu, J., Zhu. J., Zhang, P., Han, L., Reynolds, O.L., Zeng, R., Wu, J., Shao, Y., You, M. & Gurr, G.M. (2017). Silicon supplementation alters the composition of herbivore induced plant volatiles and enhances attraction of parasitoids to infested rice plants. Frontiers in Plant Science, 8, e1256. https://doi.org/10.3389/fpls.2017.01265 DOI: https://doi.org/10.3389/fpls.2017.01265
Luyckx, M., Hausman, J.F., Lutts, S. & Guerriero, G. (2017). Silicon and plants: current knowledge and technological perspectives. Frontiers in Plant Science, 8, 1-8. https://doi.org/10.3389/fpls.2017.00411 DOI: https://doi.org/10.3389/fpls.2017.00411
Maceda, A., Soto-Hernández, M., Peña-Valdivia, C.B., Trejo, C. & Terrazas, T. (2021). Lignina: composición, síntesis y evolución. Madera y Bosques, 27(2), 1-16. https://doi.org/10.21829/myb.2021.2722137 DOI: https://doi.org/10.21829/myb.2021.2722137
Mandlik, R., Thakral, V., Raturi, G., Shinde, S., Nikolić, M., Tripathi, D.K., Sonah, H. & Deshmukh, R. (2020). Significance of silicon uptake, transport, and deposition in plants. Journal of Experimental Botany 71(21), 6703-6718. https://doi.org/10.1093/jxb/eraa301 DOI: https://doi.org/10.1093/jxb/eraa301
Nawaz, M.A., Zakharenko, A.M., Zemchenko, I.V., Haider, M.S., Ali, M.A., Imtiaz, M., Chung, G., Tsatsakis, A., Sun, S. & Golokhvast, K.S. (2019). Phytolith formation in plants: From soil to cell. Plants 8(8), 249-281. https://doi.org/10.3390/plants8080249 DOI: https://doi.org/10.3390/plants8080249
Noruzi, M., Rezvanfar, M.A. & Daghighi, S.M. (2024). Benchmark dose. In: Encyclopedia of Toxicology. Academic Press. pp. 939-944. https://doi.org/10.1016/B978-0-12-824315-2.00786-7 DOI: https://doi.org/10.1016/B978-0-12-824315-2.00786-7
Ochoa, R. (2013). Pathology Issues in the design of toxicology studies. In: Handbook of Toxicologic Pathology. Elsevier. pp. 595-618. https://doi.org/10.1016/B978-0-12-415759-0.00019-4 DOI: https://doi.org/10.1016/B978-0-12-415759-0.00019-4
Pozza, E.A., Pozza, A.A.A. & Dos Santos Botelho, D.M. (2015). Silicon in plant disease control. Revista Ceres, 62(3), 323-331. https://doi.org/10.1590/0034-737X201562030013 DOI: https://doi.org/10.1590/0034-737X201562030013
Rastogi, A., Tripathi, D.K., Yadav, S., Chauhan, D.K., Živčák, M., Ghorbanpour, M., El-Sheery, N.I. & Brestic, M. (2019). Application of silicon nanoparticles in agriculture. Biotech, 9(3): e90. https://doi.org/10.1007/s13205-019-1626-7 DOI: https://doi.org/10.1007/s13205-019-1626-7
Raturi, G., Sharma, Y., Rana, V., Thakral, V., Myaka, B., Salvi, P., Singh, M., Dhar, H. & Deshmukh, R. (2021). Exploration of silicate solubilizing bacteria for sustainable agriculture and silicon biogeochemical cycle. Plant Physiology and Biochemistry, 166, 827-838. https://doi.org/10.1016/j.plaphy.2021.06.039 DOI: https://doi.org/10.1016/j.plaphy.2021.06.039
Reynolds, O.L., Padula, M,P., Zeng, R. & Gurr, G.M. (2016). Silicon: Potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Frontiers in Plant Science, 7, 1-13. https://doi.org/10.3389/fpls.2016.00744 DOI: https://doi.org/10.3389/fpls.2016.00744
Rezvanfar, M.A. (2014). Benchmark Dose. Encyclopedia of Toxicology: 3rd. Edition. Academic Press. USA. 5220 p. 402-406. https://doi.org/10.1016/B978-0-12-386454-3.00588-1 DOI: https://doi.org/10.1016/B978-0-12-386454-3.00588-1
Sahebi, M., Hanafi, M.M., Nor, A.A.S., Rafii, M.Y., Azizi, P., Tengoua, F.F., Mayzaitul, A.J.N. & Shabanimofrad, M. (2015). Importance of silicon and mechanisms of biosilica formation in plants. BioMed Research International, 2015, 1-16. https://doi.org/10.1155/2015/396010 DOI: https://doi.org/10.1155/2015/396010
Schaller, J., Puppe, D., Kaczorek, D., Ellerbrock, R., Sommer, M. (2021). Silicon cycling in soils revisited. Plants, 10(2), 1-33. https://doi.org/10.3390/plants10020295 DOI: https://doi.org/10.3390/plants10020295
Singh, P.R., Handa, R. & Manchanda, G. (2021). Nanoparticles in sustainable agriculture: an emerging opportunity. Journal of Controlled Release, 329, 1234-1248. https://doi.org/10.1016/j.jconrel.2020.10.051 DOI: https://doi.org/10.1016/j.jconrel.2020.10.051
Snehal, S. & Lohani, P. (2018). Silica nanoparticles: Its green synthesis and importance in agriculture. Journal of Pharmacognosy and Phytochemistry, 7(5), 3383-3393. Recuperado el 05 de noviembre de 2023 en https://www.phytojournal.com/archives/2018/vol7issue5/PartBE/7-5-430-619.pdf
Song, X.P., Verma, K.K., Tian, D.D., Zhang, X.Q., Liang, Y.J., Huang, X., Li, C.N. & Li, Y.R. (2021). Exploration of silicon functions to integrate with biotic stress tolerance and crop improvement. Biological Research, 54(19), 1-12. https://doi.org/10.1186/s40659-021-00344-4 DOI: https://doi.org/10.1186/s40659-021-00344-4
Suriyaprabha, R., Karunakaran, G., Kavitha, K., Yuvakkumar, R., Rajendran, V. & Kannan, N. (2014). Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnology, 8(3), 133-137. https://doi.org/10.1049/iet-nbt.2013.0004 DOI: https://doi.org/10.1049/iet-nbt.2013.0004
Thind, S., Hussain, I., Ali, S., Hussain, S., Rasheed, R., Ali, B. & Hussain, H.A. (2020). Physiological and biochemical bases of foliar Silicon-induced alleviation of cadmium toxicity in wheat. Journal of Soil Science and Plant Nutrition, 20(4), 2714-2730. https://doi.org/10.1007/s42729-020-00337-4 DOI: https://doi.org/10.1007/s42729-020-00337-4
Tréguer, P.J., Sutton, J.N., Brzezinski, M., Charette, M.A., Devries, T., Dutkiewicz, S., Ehlert, C., Hawkings, J., Leynaert, A., Liu, S.M., Monferrer, N.L., López-Acosta, M., Maldonado, M., Rahman, S., Ran, L. & Rouxel, O. (2021). Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean. Biogeosciences, 18(4), 1269-1289. https://doi.org/10.5194/bg-18-1269-2021 DOI: https://doi.org/10.5194/bg-18-1269-2021
Trejo-Téllez, L.I., García-Jiménez, A., Escobar-Sepúlveda, H.F., Ramírez-Olvera, S.M., Bello-Bello, J.J. & Gómez-Merino, F.C. (2020). Silicon induces hormetic dose-response effects on growth and concentrations of chlorophylls, amino acids and sugars in pepper plants during the early developmental stage. PeerJ, 2020(6), e9224. https://doi.org/10.7717/peerj.9224 DOI: https://doi.org/10.7717/peerj.9224
Vander, L.C. & Delvaux, B. (2019). The weathering stage of tropical soils affects the soil-plant cycle of silicon, but depending on land use. Geoderma, 351, 209-220. https://doi.org/10.1016/j.geoderma.2019.05.033 DOI: https://doi.org/10.1016/j.geoderma.2019.05.033
Vargas-Hernández, M., Macias-Bobadilla, I., Guevara-González, R.G., Rico-García, E., Ocampo-Velázquez, R.V., Avila-Juarez, L. & Torres-Pacheco, I. (2020). Nanoparticles as potential antivirals in agriculture. Agriculture (Switzerland), 10(10), e444. https://doi.org/10.3390/agriculture10100444 DOI: https://doi.org/10.3390/agriculture10100444
Vargas-Hernández, M., Macias-Bobadilla, I., Guevara-González, R.G., Romero-Gómez, S.J., Rico-García, E., Ocampo-Velázquez, R.V., Alvarez-Arquieta, L.L. & Torres-Pacheco, I. (2017). Plant hormesis management with biostimulants of biotic origin in agriculture. Frontiers in Plant Science, 8, e1762. https://doi.org/10.3389/fpls.2017.01762 DOI: https://doi.org/10.3389/fpls.2017.01762
Verma, K.K., Song, X.P., Tian, D.D., Guo, D.J., Chen, Z.L., Zhong, C.S., Nikpay, A., Singh, M., Rajput, V.D., Singh, R.K., Minkina, T. & Li, Y.R. (2021). Influence of silicon on biocontrol strategies to manage biotic stress for crop protection, performance, and improvement. Plants, 10(10), e2163. https://doi.org/10.3390/plants10102163 DOI: https://doi.org/10.3390/plants10102163
Wang, M., Gao, L., Dong, S., Sun, Y., Shen, Q. & Guo, S. (2017). Role of silicon on plant–pathogen interactions. Frontiers in Plant Science, 8, 1-14. https://doi.org/10.3389/fpls.2017.00701 DOI: https://doi.org/10.3389/fpls.2017.00701
Yamaji, N., Sakurai, G., Mitani-Ueno, N. & Ma, J.F. (2015). Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice. Proceedings of the National Academy of Sciences, 112(36), 11401-11406. https://doi.org/10.1073/pnas.1508987112 DOI: https://doi.org/10.1073/pnas.1508987112
Yang, L., Han, Y., Li, P., Li, F., Ali, S. & Hou, M. (2017). Silicon amendment is involved in the induction of plant defense responses to a phloem feeder. Scientific Reports, 7(1): 1-9. https://doi.org/10.1038/s41598-017-04571-2 DOI: https://doi.org/10.1038/s41598-017-04571-2
Zhao, D., Xu, C., Luan, Y., Shi, W., Tang, Y. & Tao, J. (2021). Silicon enhances stem strength by promoting lignin accumulation in herbaceous peony (Paeonia lactiflora Pall.). International Journal of Biological Macromolecules, 190, 769-779. https://doi.org/10.1016/j.ijbiomac.2021.09.016 DOI: https://doi.org/10.1016/j.ijbiomac.2021.09.016