IDENTIFICACIÓN DEL GEN ANTIFÚNGICO TI 14-kD EN TEOCINTLES Y MAÍZ, Y SU RELACIÓN CON Aspergillus
Gen TI14-kD en teocintles
DOI:
https://doi.org/10.60158/rma.v11i2.430Palabras clave:
Inhibidor de la tripsina, PCR, Zea diploperennis, Zea luxurians, Zea mays ssp. parviglumisResumen
Los teocintles son morfológica y genéticamente muy parecidos al maíz. Una de las enfermedades que afecta gravemente a este cultivo es causado por especies del género Aspergillus, hongos productores de aflatoxinas. El descubrimiento de la resistencia natural del maíz a esta infección fúngica resulto en diversos estudios genéticos, sin embargo, no se han realizaron en los teocintles, en este sentido el objetivo del trabajo fue identificar y analizar in silico el gen TI 14-kD de maíz y los teocintles: Zea mays ssp. parviglumis, Zea diploperennis y Zea luxurians, entre los meses de enero a junio de 2022 en el Centro de Investigación Facultad de Medicina UNAM-UABJO, Oaxaca, México. Para la identificación del gen se diseñaron oligonucleótidos específicos y mediante la Reacción en Cadena de la Polimerasa se obtuvieron los amplicones en maíz cónico, Zea diploperennis y Zea luxurians. Las secuencias nucleotídicas obtenidas por secuenciación sanger se depositaron en un banco de genes. Las secuencias se compararon en la base de datos del NCBI con otras secuencias TI que fueron altamente similares. Por su parte el análisis in silico indicó dos cambios de aminoácidos en la secuencia de maíz y una Zea diploperennis.
Citas
Aragón-Cuevas, F., Taba, S., Hernández, J. M., Figueroa, J. D. & Serrano, V. (2006). Actualización de la información sobre los maíces criollos de Oaxaca. Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Informe final SNIB-CONABIO proyecto No. CS002 México DF.
Baisakh, N., Da Silva, E.A., Pradhan, A. K. & Rajasekaran, K. (2023). Comprehensive meta-analysis of QTL and gene expression studies identify candidate genes associated with Aspergillus flavus resistance in maize. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1214907 DOI: https://doi.org/10.3389/fpls.2023.1214907
Baker, R.L., Brown, R.L., Chen, Z.-Y., Cleveland, T.E. & Fakhoury, A.M. (2009). A maize Trypsin Inhibitor (ZmTIp) with limited activity against Aspergillus flavus. Journal of Food Protection, 72(1), 185–188. https://doi.org/10.4315/0362-028x-72.1.185 DOI: https://doi.org/10.4315/0362-028X-72.1.185
Behnke, C.A., Yee, V.C., Trong, I.L., Pedersen, L.C., Stenkamp, R.E., Kim, S.-S., Reeck, G.R. & Teller, D.C. (1998). Structural determinants of the bifunctional corn Hageman Factor Inhibitor: X-ray crystal structure at 1.95 Å resolution. Biochemistry, 37(44), 15277–15288. https://doi.org/10.1021/bi9812266 DOI: https://doi.org/10.1021/bi9812266
Bose, U., Juhász, A., Broadbent, J.A., Byrne, K., Howitt, C.A. & Colgrave, M.L. (2020). Identification and quantitation of Amylase Trypsin Inhibitors across cultivars representing the diversity of bread wheat. Journal of Proteome Research, 19(5), 2136–2148. https://doi.org/10.1021/acs.jproteome.0c00059 DOI: https://doi.org/10.1021/acs.jproteome.0c00059
Castano-Duque, L., Gilbert, M.K., Mack, B.M., Lebar, M.D., Carter-Wientjes, C.H., Sickler, C.M., Cary, J.W. & Rajasekaran, K. (2021). Flavonoids modulate the accumulation of toxins from Aspergillus flavus in maize kernels. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.761446 DOI: https://doi.org/10.3389/fpls.2021.761446
Chen, I., & Mitchell, H.L. (1973). Trypsin inhibitors in plants. Phytochemistry, 12(2), 327-330. https://doi.org/10.1016/0031-9422(73)80013-5 DOI: https://doi.org/10.1016/0031-9422(73)80013-5
Chen, Z.Y., Brown, R.L., Lax, A.R., Cleveland, T.E. & Russin, J. S. (1999). Inhibition of plant-pathogenic fungi by a corn trypsin inhibitor overexpressed in Escherichia coli. Applied and Environmental Microbiology, 65(3), 1320-1324. https://doi.org/10.1128/AEM.65.3.1320-1324.1999 DOI: https://doi.org/10.1128/AEM.65.3.1320-1324.1999
Chen, Z.Y., Brown, R.L., Lax, A.R., Guo, B.Z., Cleveland, T.E. & Russin, J.S. (1998). Resistance to Aspergillus flavus in corn kernels is associated with a 14-kDa protein. Phytopathology, 88: 276-281. https://doi.org/10.1094/PHYTO.1998.88.4.276 DOI: https://doi.org/10.1094/PHYTO.1998.88.4.276
Chen, Z.Y., Rajasekaran, K., Brown, R.L., Sayler, R.J. & Bhatnagar, D. (2015). Discovery and confirmation of genes/proteins associated with maize aflatoxin resistance. World mycotoxin journal, 8(2), 211-224. https://doi.org/10.3920/WMJ2014.1732 DOI: https://doi.org/10.3920/WMJ2014.1732
Chen, Z.Y., Warburton, M.L., Hawkins, L., Wei, Q., Raruang, Y., Brown, R.L., ... & Bhatnagar, D. (2016). Production of the 14 kDa trypsin inhibitor protein is important for maize resistance against Aspergillus flavus infection/aflatoxin accumulation. World Mycotoxin Journal, 9(2), 215-228. https://doi.org/10.3920/WMJ2015.1890 DOI: https://doi.org/10.3920/WMJ2015.1890
Chilosi, G., Caruso, C., Caporale, C., Leonardi, L., Bertini, L., Buzi, A., Nobile, M., Magro, P. & Buonocore, V. (2000). Antifungal activity of a Bowman–Birk‐type Trypsin Inhibitor from wheat Kernel. Journal of Phytopathology, 148(7–8), 477–481. https://doi.org/10.1046/j.1439-0434.2000.00527.x DOI: https://doi.org/10.1046/j.1439-0434.2000.00527.x
Chiu, T., Poucet, T. & Li, Y. (2022). The potential of plant proteins as antifungal agents for agricultural applications. Synthetic and Systems Biotechnology, 7(4), 1075–1083. https://doi.org/10.1016/j.synbio.2022.06.009 DOI: https://doi.org/10.1016/j.synbio.2022.06.009
CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad). (2021). Teocintles. https://www.biodiversidad.gob.mx/diversidad/alimentos/maices/teocintles
Cotabarren, J., Ozón, B., Claver, S., Geier, F., Rossotti, M., García-Pardo, J. & Obregón, W.D. (2023). A multifunctional Trypsin protease Inhibitor from yellow bell pepper seeds: Uncovering its dual antifungal and hypoglycemic properties. Pharmaceutics, 15(3), 781. https://doi.org/10.3390/pharmaceutics15030781 DOI: https://doi.org/10.3390/pharmaceutics15030781
da Silva, M.S., Gomes, V.M., Taveira, G.B., de Azevedo dos Santos, L., Maracahipes, Á.C., Rodrigues, R., ... & Oliveira, A.E.A. (2021). Bifunctional inhibitors from Capsicum chinense seeds with antimicrobial activity and specific mechanism of action against phytopathogenic fungi. Protein and Peptide Letters, 28(2), 149-163. https://doi.org/10.2174/0929866527666200617124221 DOI: https://doi.org/10.2174/0929866527666200617124221
Divekar, P.A., Rani, V., Majumder, S., Karkute, S.G., Molla, K.A., Pandey, K.K., Behera, T.K. & Govindharaj, G.P.P. (2022). Protease inhibitors: an induced plant defense mechanism against herbivores. Journal of Plant Growth Regulation, 42(10), 6057–6073. https://doi.org/10.1007/s00344-022-10767-2 DOI: https://doi.org/10.1007/s00344-022-10767-2
do Amaral, M., Freitas, A.C.O., Santos, A.S., dos Santos, E.C., Ferreira, M.M., da Silva Gesteira, A., Gramacho, K.P., Marinho-Prado, J.S. & Pirovani, C.P. (2022). TcTI, a Kunitz-type trypsin inhibitor from cocoa associated with defense against pathogens. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-021-04700-y DOI: https://doi.org/10.1038/s41598-021-04700-y
Feng, X., Xiong, H., Zheng, D., Xin, X., Zhang, X., Wang, Q., ... & Lu, Y. (2022). Identification of Fusarium verticillioides resistance alleles in three maize populations with teosinte gene introgression. Frontiers in Plant Science, 13, 942397. https://doi.org/10.3389/fpls.2022.942397 DOI: https://doi.org/10.3389/fpls.2022.942397
García, V.A., Freire, M. das G.M., Novello, J.C., Marangoni, S. & Macedo, M.L.R. (2004). Trypsin Inhibitor from Poecilanthe parviflora Seeds: Purification, characterization, and activity against pest proteases. The Protein Journal, 23(5), 343–350. https://doi.org/10.1023/b:jopc.0000032654.67733.d5 DOI: https://doi.org/10.1023/B:JOPC.0000032654.67733.d5
Geisslitz, S., Pronin, D., Neerukonda, M., Curella, V., Neufang, S., Koch, S. & Scherf, K. A. (2023). Breeding from 1891 to 2010 did not increase the content of amylase/trypsin-inhibitors in wheat (Triticum aestivum). npj Science of Food, 7(1), 43. https://doi.org/10.1038/s41538-023-00219-w DOI: https://doi.org/10.1038/s41538-023-00219-w
Gutierrez-Gongora, D. & Geddes-McAlister, J. (2021). From naturally-sourced protease inhibitors to new treatments for fungal infections. Journal of Fungi, 7(12), 1016. https://doi.org/10.3390/jof7121016 DOI: https://doi.org/10.3390/jof7121016
Hamad, B.K., Pathak, M., Manna, R., Fischer, P.M., Emsley, J. & Dekker, L.V. (2017). Assessment of the protein interaction between coagulation factor XII and corn trypsin inhibitor by molecular docking and biochemical validation. Journal of Thrombosis and Haemostasis, 15(9), 1818-1828. https://doi.org/10.1111/jth.13773 DOI: https://doi.org/10.1111/jth.13773
Han, G., Li, C., Xiang, F., Zhao, Q., Zhao, Y., Cai, R., Cheng, B., Wang, X. & Tao, F. (2020). Genome-wide association study leads to novel genetic insights into resistance to Aspergillus flavus in maize kernels. BMC Plant Biology, 20(1). https://doi.org/10.1186/s12870-020-02404-5 DOI: https://doi.org/10.1186/s12870-020-02404-5
Han, Y., Taylor, E.B. & Luthe, D. (2021). Maize Endochitinase expression in response to fall armyworm herbivory. Journal of Chemical Ecology, 47(7), 689–706. https://doi.org/10.1007/s10886-021-01284-9 DOI: https://doi.org/10.1007/s10886-021-01284-9
Hellinger, R. & Gruber, C. W. (2019). Peptide-based protease inhibitors from plants. Drug Discovery Today, 24(9), 1877–1889. https://doi.org/10.1016/j.drudis.2019.05.026 DOI: https://doi.org/10.1016/j.drudis.2019.05.026
Jain, M., Amera, G.M., Muthukumaran, J. & Singh, A.K. (2022). Insights into biological role of plant defense proteins: A review. Biocatalysis and Agricultural Biotechnology, 40, 102293. https://doi.org/10.1016/j.bcab.2022.102293 DOI: https://doi.org/10.1016/j.bcab.2022.102293
Jia, Z., Wang, P., Xu, Y., Feng, G., Wang, Q., He, X., ... & Chen, J. (2022). Trypsin inhibitor LH011 inhibited DSS-induced mice colitis via alleviating inflammation and oxidative stress. Frontiers in pharmacology, 13, 986510. https://doi.org/10.3389/fphar.2022.986510 DOI: https://doi.org/10.3389/fphar.2022.986510
Jiang, C., Wang, L., Shao, J., Jing, H., Ye, X., Jiang, C., Wang, H. & Ma, C. (2020). Screening and identifying of α‐amylase inhibitors from medicine food homology plants: Insights from computational analysis and experimental studies. Journal of Food Biochemistry, 44(12). https://doi.org/10.1111/jfbc.13536 DOI: https://doi.org/10.1111/jfbc.13536
Korneeva, V.A., Trubetskov, M.M., Korshunova, A.V., Lushchekina, S.V., Kolyadko, V.N., Sergienko, O.V., ... & Ataullakhanov, F. I. (2014). Interactions outside the proteinase-binding loop contribute significantly to the inhibition of activated coagulation factor XII by its canonical inhibitor from corn. Journal of Biological Chemistry, 289(20), 14109-14120. https://doi.org/10.1074/jbc.m114.553735 DOI: https://doi.org/10.1074/jbc.M114.553735
Matsuoka, Y., Vigouroux, Y., Goodman, M.M., Sanchez G.J., Buckler, E. & Doebley, J. (2002). A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences, 99(9), 6080-6084. DOI: https://doi.org/10.1073/pnas.052125199
Mishra, U.N., Reddy, M.V. & Prasad, D.T. (2020). Plant serine protease inhibitor (SPI): A potent player with bactericidal, fungicidal, nematicidal and antiviral properties. International Journal of Chemical Studies, 8(1), 2985–2993. https://doi.org/10.22271/chemi.2020.v8.i1at.8724 DOI: https://doi.org/10.22271/chemi.2020.v8.i1at.8724
Møller, M. S. & Svensson, B. (2022). Structure, function and protein engineering of cereal-type inhibitors acting on amylolytic enzymes. Frontiers in Molecular Biosciences, 9, 868568. https://doi.org/10.3389/fmolb.2022.868568 DOI: https://doi.org/10.3389/fmolb.2022.868568
Ortega-Beltran, A. & Cotty, P.J. (2020). Influence of wounding and temperature on resistance of maize landraces from Mexico to aflatoxin contamination. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.572264 DOI: https://doi.org/10.3389/fpls.2020.572264
Ortega-Beltran, A., Jaime, R. & Cotty, P.J. (2021). Resistance of maize landraces from Mexico to aflatoxin contamination: influence of aflatoxin-producing fungi genotype and length of incubation. European Journal of Plant Pathology, 162(1), 237–246. https://doi.org/10.1007/s10658-021-02385-7 DOI: https://doi.org/10.1007/s10658-021-02385-7
Pesoti, A.R., Oliveira, B.M.D., Oliveira, A.C.D., Pompeu, D.G., Gonçalves, D.B., Marangoni, S., ... & Granjeiro, P.A. (2015). Extraction, purification and characterization of inhibitor of trypsin from Chenopodium quinoa seeds. Food Science and Technology, 35, 588-597. https://doi.org/10.1590/1678-457X.6655 DOI: https://doi.org/10.1590/1678-457X.6655
Riyaphan, J., Pham, D.-C., Leong, M.K. & Weng, C.-F. (2021). In silico approaches to identify polyphenol compounds as α-Glucosidase and α-Amylase Inhibitors against Type-II Diabetes. Biomolecules, 11(12), 1877. https://doi.org/10.3390/biom11121877 DOI: https://doi.org/10.3390/biom11121877
Sagu, S.T., Landgräber, E., Henkel, I.M., Huschek, G., Homann, T., Bußler, S., ... & Rawel, H. (2021). Effect of cereal α-amylase/trypsin inhibitors on developmental characteristics and abundance of digestive enzymes of mealworm larvae (Tenebrio molitor L.). Insects, 12(5), 454. https://doi.org/10.3390/insects12050454 DOI: https://doi.org/10.3390/insects12050454
Santos, N.R., de Oliveira, W.F., Cabrera, M.P., Bezerra Filho, C.M., Patriota, L.L., Napoleão, T.H., ... & Correia, M.T. (2023). A fluorescent quantum dot conjugate to probe the interaction of Enterolobium contortisiliquum trypsin inhibitor with cancer cells. International Journal of Biological Macromolecules, 126453. https://doi.org/10.1016/j.ijbiomac.2023.126453 DOI: https://doi.org/10.1016/j.ijbiomac.2023.126453
Teixeira, E.M.G.F., Kalume, D.E., Ferreira, P.F., Alves, T.A., Fontão, A.P.G., Sampaio, A. L. F., ... & Silva-López, R. E. (2024). A novel trypsin kunitz-type inhibitor from Cajanus cajan leaves and its inhibitory activity on new Cancer Serine Proteases and its effect on tumor cell growth. The Protein Journal, 1-18. https://doi.org/10.1007/s10930-023-10175-9 DOI: https://doi.org/10.1007/s10930-023-10175-9
Tiffin, P. (2004). Comparative evolutionary histories of chitinase genes in the genus Zea and family Poaceae. Genetics, 167(3), 1331-1340. https://doi.org/10.1534/genetics.104.026856 DOI: https://doi.org/10.1534/genetics.104.026856
Varapizuela-Sánchez, C.F., Sánchez-Medina, M.A., Pina-Canseco, M.D.S., Rosas-Murrieta, N.H., Pérez-Santiago, A.D. & García-Montalvo, I.A. (2022). Glyoxalase I (GLX-I) analysis in native maize from Oaxaca, Mexico, infected with Aspergillus flavus in vitro. Revista de la Facultad de Agronomía de la Universidad de Zulia, 39(4). https://doi.org/10.47280/revfacagron(luz).v39.n4.01 DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v39.n4.01
Vásquez-Luis, P., del Socorro Pina-Canseco, M., Pérez-Santiago, A.D., Matías-Pérez, D., García-Montalvo, I.A., Hernández-Morales, J.L. & Sánchez-Medina, M.A. (2023). Expresión del gen antifúngico zeamatina en coleóptilos de maíz arrocillo ante infección por Aspergillus. Revista Mexicana de Agroecosistemas, 10(2), 68-77. https://doi.org/10.60158/rma.v10i2.401 DOI: https://doi.org/10.60158/rma.v10i2.401
Wang, B., Wang, Y., He, W., Huang, M., Yu, L., Cheng, D., ... & Chen, H. (2023). StMLP1, as a Kunitz trypsin inhibitor, enhances potato resistance and specifically expresses in vascular bundles during Ralstonia solanacearum infection. The Plant Journal, 116(5), 1342-1354. https://doi.org/10.1111/tpj.16428 DOI: https://doi.org/10.1111/tpj.16428
Warburton, M.L., Jeffers, D., Smith, J.S., Scapim, C., Uhdre, R., Thrash, A. & Williams, W.P. (2022). Comparative analysis of multiple GWAS results identifies metabolic pathways associated with resistance to A. flavus infection and aflatoxin accumulation in maize. Toxins, 14(11), 738. https://doi.org/10.3390/toxins14110738 DOI: https://doi.org/10.3390/toxins14110738
Xie, Y., Ravet, K. & Pearce, S. (2021). Extensive structural variation in the Bowman-Birk inhibitor family in common wheat (Triticum aestivum L.). BMC Genomics, 22(1). https://doi.org/10.1186/s12864-021-07475-8 DOI: https://doi.org/10.1186/s12864-021-07475-8
Zhang, H., Qiao, Q., Zhao, Y., Zhang, L., Shi, J., Wang, N., ... & Shan, S. (2024). Expression and purification of recombinant Bowman–Birk Trypsin Inhibitor from foxtail millet bran and its anticolorectal cancer effect in vitro and in vivo. Journal of Agricultural and Food Chemistry, 72(18), 10439–10450. https://doi.org/10.1021/acs.jafc.3c08711 DOI: https://doi.org/10.1021/acs.jafc.3c08711
Zhang, L., Peek, A.S., Dunams, D. & Gaut, B. S. (2002). Population genetics of duplicated disease-defense genes, hm1 and hm2, in maize (Zea mays ssp. mays L.) and its wild ancestor (Zea mays ssp. parviglumis). Genetics, 162(2), 851–860. https://doi.org/10.1093/genetics/162.2.851 DOI: https://doi.org/10.1093/genetics/162.2.851
Zhang, X., Yang, Q., Rucker, E., Thomason, W. & Balint-Kurti, P. (2017). Fine mapping of a quantitative resistance gene for gray leaf spot of maize (Zea mays L.) derived from teosinte (Z. mays ssp. parviglumis). Theoretical and applied genetics, 130, 1285-1295. https://doi.org/10.1007/s00122-017-2888-2 DOI: https://doi.org/10.1007/s00122-017-2888-2