Optimización del enraizamiento y brotación en esquejes de Bougainvillea glabra Choisy con reguladores de crecimiento

Reproducción de bugambilia

Autores/as

  • Julio Cesar Ahuatzin-Hernández Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ). Unidad Sureste. Mérida, Yucatán. México https://orcid.org/0009-0005-8497-1609
  • Roberto Rafael Ruiz-Santiago Centro de Investigación Científica de Yucatán. Unidad de Recursos Naturales, Laboratorio Regional para el Estudio y Conservación de Germoplasma. Mérida, Yucatán. México. https://orcid.org/0000-0001-7698-5828
  • Aldo Daniel Chan-Arjona Tecnológico Nacional de México (TecNM). Instituto Tecnológico de Conkal. Conkal, Yucatán. México https://orcid.org/0000-0002-8831-1799
  • René Garruña-Hernández Secretaria de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI). Instituto Tecnológico de Conkal. Conkal, Yucatán. México https://orcid.org/0000-0003-2787-0914

DOI:

https://doi.org/10.60158/3xera837

Palabras clave:

crecimiento vegetal, plantas ornamentales, promotores de crecimiento

Resumen

La propagación por esquejes de Bougainvillea glabra es una práctica clave en viveros ornamentales, pero su eficiencia depende de señales hormonales exógenas. El objetivo del presente estudio fue evaluar el efecto de tres reguladores de crecimiento vegetal (RCV) comerciales, ProRoot® (ANA+IBA), BioGib® (GA₃) y ácido salicílico (AS) grado reactivo respecto a un control (agua) sobre el desempeño de esquejes de b. glabra a los 60 días después del trasplante. El ensayo se estableció en bloques completos al azar (tres repeticiones por tratamiento). Se registró el número total de rebrotes, hojas, raíces primarias y área foliar. Los datos se analizaron mediante un análisis de varianza (ANOVA) y las medias se compararon utilizando la prueba de Tukey. Todos los RCV mejoraron significativamente las variables respecto al control. BioGib promovió el crecimiento aéreo, con la mayor formación de brotes (5.78) y el mayor número de hojas (35.5). ProRoot destacó en el número de raíces, maximizando el número de raíces primarias. El AS mostró efectos intermedios y consistentes sobre brotación y enraizamiento. En conjunto, los resultados indican que la combinación estratégica de GA₃ (para vigor de la parte aérea) y auxinas (para inducción radicular) puede optimizar la producción de plántulas homogéneas y vigorosas de B. glabra en condiciones de vivero, mientras que el AS representa una alternativa de bajo costo con beneficios fisiológicos complementarios. Estos hallazgos ofrecen criterios prácticos para seleccionar RCV según el objetivo y las restricciones operativas del vivero.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Bhatla, S.C., Lal, A.M., & Bhatla, S.C. (2018). Plant growth regulators: An overview. En S.C. Bhatla & A.M. Lal (Eds.), Plant Physiology, Development and Metabolism (pp. 559–568). DOI: https://doi.org/10.1007/978-981-13-2023-1_14

Bouteraa, M.T., Ben Romdhane, W., Baazaoui, N., Alfaifi, M.Y., Chouaibi, Y., Ben Akacha, B., Ben Hsouna, A., Kačániová, M., Ćavar Zeljković, S., Garzoli, S. & Ben Saad, R. (2023). GASA proteins: Review of their functions in plant environmental stress tolerance. Plants, 12(10), 2045. https://doi.org/10.3390/plants12102045 DOI: https://doi.org/10.3390/plants12102045

Campbell, S. M., Anderson, S. L., Brym, Z., & Pearson, B. J. (2021). Evaluation of substrate composition and exogenous hormone application on vegetative propagule rooting success of essential oil hemp (Cannabis sativa L.). bioRxiv Preprint. https://doi.org/10.1101/2021.03.15.435449 DOI: https://doi.org/10.1101/2021.03.15.435449

Cho, H. T., & Kende, H. (1997). Expression of expansin genes is correlated with growth in deepwater rice. The Plant Cell, 9(9), 1661–1671. https://doi.org/10.1105/tpc.9.9.1661 DOI: https://doi.org/10.1105/tpc.9.9.1661

Cosgrove, D. J. (2024). Plant cell wall loosening by expansins. Annual Review of Cell and Developmental Biology, 40, 329-352. https://doi.org/10.1146/annurev-cellbio-111822-115334 DOI: https://doi.org/10.1146/annurev-cellbio-111822-115334

Datta, S.K., Jayanthi, R., & Janakiram, T. (2022). Bougainvillea. En T. Janakiram & R. Jayanthi (Eds.), Floriculture and Ornamental Plants (pp. 643–675). DOI: https://doi.org/10.1007/978-981-15-3518-5_2

Di Rienzo, J., Casanoves, F., Balzarini, M., González, L., Tablada, M., & Robledo, C. (2020). InfoStat (Versión 2020) [Computer software]. Universidad Nacional de Córdoba. https://www.infostat.com.ar

Druege, U., Hilo, A., Pérez-Pérez, J. M., Klopotek, Y., Acosta, M., Shahinnia, F., Zerche, S., Franken, P., & Hajirezaei, M. R. (2019). Molecular and physiological control of adventitious rooting in cuttings: Phytohormone action meets resource allocation. Annals of Botany, 123(6), 929–949. https://doi.org/10.1093/aob/mcy234 DOI: https://doi.org/10.1093/aob/mcy234

Dzib-Ek, G., Villanueva-Couoh, E., Garruña-Hernández, R., Vergara-Yoisura, S., & Larqué-Saavedra, A. (2021). Effect of salicylic acid on tomato germination and root growth. Revista Mexicana de Ciencias Agrícolas, 12(4), 735 – 740. https://doi.org/10.29312/remexca.v12i4.2642 DOI: https://doi.org/10.29312/remexca.v12i4.2642

Elmongy, M.S., Cao, Y., Zhou, H., & Xia, Y. (2018). Root development enhanced by indole-3-butyric acid and naphthalene acetic acid and associated biochemical changes of in vitro azalea microshoots. Journal of Plant Growth Regulation, 37, 813–825. DOI: https://doi.org/10.1007/s00344-017-9776-5

Elumalai, A., Eswaraiah, M.C., Lahari, K.M., & Shaik, H.A. (2012). In vivo screening of Bougainvillea glabra leaves for analgesic, antipyretic and anti-inflammatory activities. Asian Journal of Research in Pharmaceutical Sciences, 2(3), 85–87.

Emamverdian, A., Ding, Y., & Mokhberdoran, F. (2020). The role of salicylic acid and gibberellin signaling in plant responses to abiotic stress with emphasis on heavy metals. Plant Signaling & Behavior, 15(7), 1777372. https://doi.org/10.1080/15592324.2020.1777372 DOI: https://doi.org/10.1080/15592324.2020.1777372

Fabricant, D.S., & Farnsworth, N.R. (2001). The value of plants used in traditional medicine for drug discovery. Environmental Health Perspectives, 109(1), 69–75. DOI: https://doi.org/10.1289/ehp.01109s169

Fanego, A., Soto, R. & Martínez, S. (2009). Brotación y enraizamiento de estacas procedentes de diferentes secciones de las ramas de Bougainvillea glabra Choisy. Centro Agrícola, 36(3), 9–13.

Finet, C. & Jaillais, Y. (2012). Auxology: When auxin meets plant evo-devo. Developmental Biology, 369(1), 19–31. DOI: https://doi.org/10.1016/j.ydbio.2012.05.039

Gad, M.M., Abdul-Hafeez, E.Y., & Ibrahim, O.H.M. (2016). Foliar application of salicylic acid and gibberellic acid enhances growth and flowering of Ixora coccinea L. plants. Journal of Plant Production, 7(1), 85–91. https://doi.org/10.21608/jpp.2016.43477 DOI: https://doi.org/10.21608/jpp.2016.43477

Gobato, R., Gobato, A., & Fedrigo, D. (2016). Study of the molecular electrostatic potential of D-pinitol, an active hypoglycemic principle found in spring flower “Three Marys” (Bougainvillea spp.), using the MM+ method. Parana Journal of Science and Education, 2(1), 1–9. https://doi.org/10.31018/jans.v9i3.1389 DOI: https://doi.org/10.31018/jans.v9i3.1389

Gutiérrez-Coronado, M. A., Trejo-López, C. & Larqué-Saavedra, A. (1998). Effects of salicylic acid on the growth of roots and shoots in soybean. Plant Physiology and Biochemistry, 36(8), 563-565. DOI: https://doi.org/10.1016/S0981-9428(98)80003-X

Han, S., Jiao, Z., Niu, M.-X., Yu, X., Huang, M., Liu, C., Wang, H.-L., Zhou, Y., Mao, W., Wang, X., Yin, W. & Xia, X. (2021). Genome-wide comprehensive analysis of the GASA gene family in Populus. International Journal of Molecular Sciences, 22(22), 12336. https://doi.org/10.3390/ijms222212336 DOI: https://doi.org/10.3390/ijms222212336

Hoermayer, L., Montesinos, J.C., Marhava, P., Benková, E., Yoshida, S., & Friml, J. (2020). Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots. Proceedings of the National Academy of Sciences, 117(26), 15322–15331. DOI: https://doi.org/10.1073/pnas.2003346117

Hu, J., Israeli, A., Ori, N. & Sun, T.-P. (2018). The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato. The Plant Cell, 30(8), 1710-1728. https://doi.org/10.1105/tpc.18.00363 DOI: https://doi.org/10.1105/tpc.18.00363

Ibironke, O. A. (2019). Root initiation of Bougainvillea from cuttings using different rooting hormones. Advances in Plants & Agriculture Research, 9(1), 121–125. https://doi.org/10.15406/apar.2019.09.00421 DOI: https://doi.org/10.15406/apar.2019.09.00421

Ito, T., Okada, K., Fukazawa, J., & Takahashi, Y. (2018). DELLA-dependent and DELLA-independent gibberellin signaling. Plant Signaling & Behavior, 13(3), e1445933. https://doi.org/10.1080/15592324.2018.1445933 DOI: https://doi.org/10.1080/15592324.2018.1445933

Kaewchangwat, N., Thanayupong, E., Jarussophon, S., Niamnont, N., Yata, T., Prateepchinda, S., & Suttisintong, K. (2020). Coumarin-caged compounds of 1-naphthaleneacetic acid as light-responsive controlled-release plant root stimulators. Journal of Agricultural and Food Chemistry, 68(23), 6268–6279. DOI: https://doi.org/10.1021/acs.jafc.0c00138

Kentelky, E., Jucan, D., Cantor, M. & Szekely-Varga, Z. (2021). Efficacy of different concentrations of NAA on selected ornamental woody shrubs cuttings. Horticulturae, 7(11), 464. https://doi.org/10.3390/horticulturae7110464 DOI: https://doi.org/10.3390/horticulturae7110464

Koo, Y. M., Heo, A. Y., & Choi, H. W. (2020). Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal, 36(1), 1–10. https://doi.org/10.5423/PPJ.RW.12.2019.0295 DOI: https://doi.org/10.5423/PPJ.RW.12.2019.0295

Lakehal, A., & Bellini, C. (2019). Control of adventitious root formation: Insights into synergistic and antagonistic hormonal interactions. Physiologia Plantarum, 165(1), 90–100. https://doi.org/10.1111/ppl.12823 DOI: https://doi.org/10.1111/ppl.12823

Lee, H. W., Cho, C., Pandey, S. K., Park, Y., Kim, M.-J., & Kim, J. (2019). LBD16 and LBD18 acting downstream of ARF7 and ARF19 are involved in adventitious root formation in Arabidopsis. BMC Plant Biology, 19(1), 46. https://doi.org/10.1186/s12870-019-1659-4 DOI: https://doi.org/10.1186/s12870-019-1659-4

Li, Y.H., Mo, Y.W., Wang, S.B., & Zhang, Z. (2020). Auxin efflux carriers, MiPINs, are involved in adventitious root formation of mango cotyledon segments. Plant Physiology and Biochemistry, 150, 15–26. https://doi.org/10.1016/j.plaphy.2020.02.028 DOI: https://doi.org/10.1016/j.plaphy.2020.02.028

Lin, H., Xu, J., Wu, K., Gong, C., Jie, Y., Yang, B., & Chen, J. (2024). An efficient method for the propagation of Bougainvillea glabra ‘New River’ (Nyctaginaceae) from in vitro stem segments. Forests, 15(3), 519. http://doi.org/10.3390/F15030519 DOI: https://doi.org/10.3390/f15030519

Mauriat, M., Petterle, A., Bellini, C., & Moritz, T. (2014). Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. The Plant Journal, 78(3), 372–384. http://doi.org/10.1111/tpj.12478 DOI: https://doi.org/10.1111/tpj.12478

Pacurar, D. I., Perrone, I., & Bellini, C. (2014). Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiologia Plantarum, 151(1), 83–96. https://doi.org/10.1111/ppl.12171 DOI: https://doi.org/10.1111/ppl.12171

Pasternak, T., Groot, E. P., Kazantsev, F. V., Teale, W., Omelyanchuk, N., Kovrizhnykh, V., Palme, K., & Mironova, V. V. (2019). Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. Plant Physiology, 180(3), 1725–1739. https://doi.org/10.1104/pp.19.00130 DOI: https://doi.org/10.1104/pp.19.00130

Saeed, A., & Amin, T. (2020). Effects of location, gender and indole-3-butyric acid on rooting of Laurus nobilis L. semi-hardwood stem cuttings. Agricultural Science and Technology, 12(3), 260–263. https://10.15547/ast.2020.03.041 DOI: https://doi.org/10.15547/ast.2020.03.041

Saleem, H., Usman, A., Mahomoodally, M.F., & Ahemad, N. (2021). Bougainvillea glabra (Choisy): A comprehensive review on botany, traditional uses, phytochemistry, pharmacology and toxicity. Journal of Ethnopharmacology, 266, 113356. https://doi.org/10.1016/j.jep.2020.113356 DOI: https://doi.org/10.1016/j.jep.2020.113356

Sampedro, J., & Cosgrove, D. J. (2005). The expansin superfamily. Genome Biology, 6(12), 242. https://doi.org/10.1186/gb-2005-6-12-242 DOI: https://doi.org/10.1186/gb-2005-6-12-242

Sardoei, A. S., & Shahdadneghad, M. (2015). Effect of salicylic acid synergists on rooting softwood cuttings of poinsettia (Euphorbia pulcherrima). Journal of Plant Sciences, 10(5), 206–209. https://doi.org/10.3923/jps.2015.206.209 DOI: https://doi.org/10.3923/jps.2015.206.209

Sevik, H. & Güney, K. (2013). Effects of IAA, IBA, NAA, and GA₃ on rooting and morphological features of Melissa officinalis L. stem cuttings. The Scientific World Journal, 2013(1), 909507. https://doi.org/10.1155/2013/909507 DOI: https://doi.org/10.1155/2013/909507

Shrestha, J., Bhandari, N., Baral, S., Marahatta, S.P., & Pun, U. (2023). Effect of rooting hormones and media on vegetative propagation of Bougainvillea. Ornamental Horticulture, 29(3), 397–406. https://doi.org/10.1590/2447-536X.v29i3.2637 DOI: https://doi.org/10.1590/2447-536x.v29i3.2637

Sivakumar, B., Senthilkumar, P., Deivamani, M., Sasikumar, K., Ayyadurai, P., Govindan, K., Senthilkumar, T. y Mangammal, P. (2024). Influence of IBA and NAA on rooting of terminal cuttings of chrysanthemum (Dendranthema grandiflora L.). Journal of Scientific Research and Reports, 30(10), 680-685. https://doi.org/10.9734/jsrr/2024/v30i102493 DOI: https://doi.org/10.9734/jsrr/2024/v30i102493

Small, C.C., & Degenhardt, D. (2018). Plant growth regulators for enhancing revegetation success in reclamation: A review. Ecological Engineering, 118, 43–51. https://doi.org/10.1016/j.%20ecoleng.2018.04.010 DOI: https://doi.org/10.1016/j.ecoleng.2018.04.010

Sourati, R., Sharifi, P., Poorghasemi, M., Alves Vieira, E., Seidavi, A., Anjum, N.A., & Sofo, A. (2022). Effects of naphthaleneacetic acid, indole-3-butyric acid and zinc sulfate on the rooting and growth of mulberry cuttings. International Journal of Plant Biology, 13(3), 245–256. https://doi.org/10.3390/ijpb13030021 DOI: https://doi.org/10.3390/ijpb13030021

Thomas, S.G., Rieu, I., & Steber, C.M. (2005). Gibberellin metabolism and signaling. Vitamins and Hormones, 72, 289–338. https://doi.org/10.1016/S0083-6729(05)72009-4 DOI: https://doi.org/10.1016/S0083-6729(05)72009-4

Vaishnav, D., & Chowdhury, P. (2023). Types and function of phytohormones and their role in stress. En P. Chowdhury (Ed.), Plant Abiotic Stress Responses and Tolerance Mechanisms. IntechOpen. https://doi.org/10.5772/intechopen.109325 DOI: https://doi.org/10.5772/intechopen.109325

Wang, Z., Cao, J., Lin, N., Li, J., Wang, Y., Liu, W., Yao, W. & Li, Y. (2024). Origin, evolution, and diversification of the expansin family in plants. International Journal of Molecular Sciences, 25(21), 11814. https://doi.org/10.3390/ijms252111814 DOI: https://doi.org/10.3390/ijms252111814

Xue, H., Gao, X., He, P., & Xiao, G. (2022). Origin, evolution, and molecular function of DELLA proteins in plants. The Crop Journal, 10(2), 287–299. https://doi.org/10.1016/j.cj.2021.06.005 DOI: https://doi.org/10.1016/j.cj.2021.06.005

Yang, W., Zhu, C., Ma, X., Li, G., Gan, L., Ng, D., & Xia, K. (2013). Hydrogen peroxide is a second messenger in the salicylic-acid-triggered adventitious rooting process in mung bean seedlings. PLoS ONE, 8(12), e84580. https://doi.org/10.1371/journal.pone.0084580 DOI: https://doi.org/10.1371/journal.pone.0084580

Archivos adicionales

Publicado

2025-12-19

Cómo citar

Ahuatzin Hernández, J., Ruiz Santiago, R. R., Chan Arjona, A. D., & Garruña Hernández, R. (2025). Optimización del enraizamiento y brotación en esquejes de Bougainvillea glabra Choisy con reguladores de crecimiento: Reproducción de bugambilia. Revista Mexicana De Agroecosistemas, 12(3). https://doi.org/10.60158/3xera837