DIVERSIDAD VEGETAL DEL SOTOBOSQUE EN RODALES DE OYAMEL EN AQUIXTLA, PUEBLA, MÉXICO

Diversidad en rodales de oyamel

Autores/as

DOI:

https://doi.org/10.60158/rma.v10i2.367

Palabras clave:

Abies religiosa, apertura del dosel, fotografías hemisféricas, índices de diversidad

Resumen

La vegetación del sotobosque representa el mayor componente de biodiversidad en la mayoría de los ecosistemas forestales, y tiene un papel clave en su funcionamiento. El objetivo fue evaluar cómo la estructura del dosel y la disponibilidad de luz, influyen en la diversidad del sotobosque en rodales puros de Abies religiosa (oyamel) en Aquixtla, Puebla. Se establecieron 16 unidades de muestreo en masas puras de oyamel, ubicando cinco cuadrantes de 1 m2 en cada unidad, en los que se colectaron, registraron, y determinaron las plantas presentes; se estimaron la riqueza de especies, y los índices de diversidad de Shannon y Simpson. Se evaluaron también el ambiente lumínico y la estructura del dosel con fotografías hemisféricas. La relación entre las variables de estudio se determinó con el coeficiente de correlación de Pearson y con regresión lineal simple. El índice de diversidad de Shannon-Wiener presentó valores de entre 0.98 y 2.52, mientras que el índice de Simpson de 0.48 a 0.89. La riqueza de especies tuvo una relación lineal positiva con la fracción de apertura del dosel (R2 = 0.68; p < 0.001), con el índice de diversidad de Shannon-Wiener (R2 = 0.51; p < 0.01) y con el índice de Simpson (R2 = 0.34; p < 0.05). Se concluye que la estructura del dosel influye en la diversidad del sotobosque de diversas maneras. Un aumento en la apertura tendrá un efecto positivo al incrementarse la heterogeneidad y disponibilidad de la luz, promoviendo la presencia de especies con diferentes necesidades de luz.

Citas

Ampoorter, E., Baeten, L., Koricheva, J., Vanhellemont, M., & Verheyen, K. (2014). Do diverse overstoreys induce diverse understoreys? Lessons learnt from an experimental–observational platform in Finland. Forest Ecology and Management, 318, 206-215. https://doi.org/10.1016/j.foreco.2014.01.030 DOI: https://doi.org/10.1016/j.foreco.2014.01.030

Bartemucci, P., Messier, C., & Canham, C.D. (2006). Overstory influences on light attenuation patterns and understory plant community diversity and composition in southern boreal forests of Quebec. Canadian Journal of Forest Research, 36(9), 2065-2079. https://doi.org/10.1139/X06-088 DOI: https://doi.org/10.1139/x06-088

Canham, C. D. (1988). An index for understory light levels in and around canopy gaps. Ecology, 69(5), 1634-1638. https://doi.org/10.2307/1941664 DOI: https://doi.org/10.2307/1941664

Castaños-Martínez, L., & Castro-Zavala, S. (2014). Manejo forestal: Reserva Forestal Multifuncional “El Manantial” SC Conceptos, Conductas y Acciones. Zapopan, México: Comisión Nacional Forestal. https://doi.org/10.1017/CBO9781107415324.004 DOI: https://doi.org/10.1017/CBO9781107415324.004

Castro-Luna, M. (2013). Registro de la riqueza herbácea y arbustiva en el bosque de Abies religiosa de la zona de amortiguamiento del Parque Nacional Izta-Popo y el Parque Nacional Zoquiapan Tesis de Licenciatura. Facultad de Estudios Superiores “Zaragoza”, UNAM 179 p].

Chávez, V., & Macdonald, S. (2010). The influence of canopy patch mosaics on understory plant community composition in boreal mixedwood forest. Forest ecology and management, 259(6), 1067-1075. https://doi.org/10.1016/j.foreco.2009.12.013 DOI: https://doi.org/10.1016/j.foreco.2009.12.013

Chen, H. Y. (2003). Characteristics of Light Availability under Forest Canopies and its Influences on Photosynthesis of Understory Plants. Forest Ecosystems, 5(3), 54-62.

Comeau, P.G. (2002). Relationships between stand parameters and understorey light in boreal aspen stands. Journal of Ecosystems and Management, 1(2), 8. https://doi.org/10.22230/jem.2002v1n2a240 DOI: https://doi.org/10.22230/jem.2002v1n2a240

Cuevas-Guzmán, R., Cisneros-Lepe, E.A., Jardel-Peláez, E.J., Sánchez-Rodríguez, E.V., Guzmán-Hernández, L., Núñez-López, N.M., & Rodríguez-Guerrero, C. (2011). Análisis estructural y de diversidad en los bosques de Abies de Jalisco, México. Revista mexicana de biodiversidad, 82(4), 1219-1233. DOI: https://doi.org/10.22201/ib.20078706e.2011.4.741

Encina-Domínguez, J.A., Encina-Domínguez, F.J., Mata-Rocha, E., & Valdes-Reyna, J. (2008). Aspectos estructurales, composición florística y caracterización ecológica del bosque de oyamel de la Sierra de Zapalinamé, Coahuila, México. Boletín de la Sociedad Botánica de México (83), 13-24. DOI: https://doi.org/10.17129/botsci.1785

Fahey, R.T., & Puettmann, K.J. (2007). Ground-layer disturbance and initial conditions influence gap partitioning of understorey vegetation. Journal of Ecology, 1098-1109. https://doi.org/10.1111/j.1365-2745.2007.01283.x DOI: https://doi.org/10.1111/j.1365-2745.2007.01283.x

Frazer, G. (1999). Gap light analyzer (GLA). , Version 2.0, 36.

Gilliam, F. (2014). The herbaceous layer in forests of eastern North America. Oxford University Press. https://doi.org/10.1093/acprof:osobl/9780199837656.001.0001 DOI: https://doi.org/10.1093/acprof:osobl/9780199837656.001.0001

Goslee, S.C. (2006). Behavior of vegetation sampling methods in the presence of spatial autocorrelation. Plant Ecology, 187(2), 203-212. https://doi.org/10.1007/s11258-005-3495-x DOI: https://doi.org/10.1007/s11258-005-3495-x

Grace, J.B., & Pugesek, B.H. (1997). A structural equation model of plant species richness and its application to a coastal wetland. The American Naturalist, 149(3), 436-460. https://doi.org/10.1086/285999 DOI: https://doi.org/10.1086/285999

Gustafsson, L., Baker, S.C., Bauhus, J., Beese, W.J., Brodie, A., Kouki, J., . . . Messier, C. (2012). Retention forestry to maintain multifunctional forests: a world perspective. BioScience, 62(7), 633-645. https://doi.org/10.1525/bio.2012.62.7.6 DOI: https://doi.org/10.1525/bio.2012.62.7.6

Hansen, A.J., Spies, T.A., Swanson, F.J., & Ohmann, J.L. (1991). Conserving biodiversity in managed forests. BioScience, 41(6), 382-392. https://doi.org/10.2307/1311745 DOI: https://doi.org/10.2307/1311745

Hu, L., Yan, B., Wu, X., & Li, J. (2010). Calculation method for sunshine duration in canopy gaps and its application in analyzing gap light regimes. Forest ecology and management, 259(3), 350-359. https://doi.org/10.1016/j.foreco.2009.10.029 DOI: https://doi.org/10.1016/j.foreco.2009.10.029

Kern, C.C., Montgomery, R.A., Reich, P.B., & Strong, T.F. (2013). Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest. Journal of Plant Ecology, 6(1), 101-112. https://doi.org/10.1093/jpe/rts016 DOI: https://doi.org/10.1093/jpe/rts016

Kimmins, J.P. (2004). Forest ecology. In T.G. Northcoke & G.F. Hartman (Eds.), Fishes and forestry: Worldwide watershed interactions and management (pp. 17-43). Blackwell, Oxford, United Kingdom. DOI: https://doi.org/10.1002/9780470995242.ch2

Leblanc, S., & Fournier, R. (2014). Hemispherical photography simulations with an architectural model to assess retrieval of leaf area index. Agricultural and Forest Meteorology, 194, 64-76. https://doi.org/10.1016/j.agrformet.2014.03.016 DOI: https://doi.org/10.1016/j.agrformet.2014.03.016

Lefcheck, J.S., Byrnes, J.E., Isbell, F., Gamfeldt, L., Griffin, J.N., Eisenhauer, N., . . . Duffy, J.E. (2015). Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature communications, 6(1), 1-7. https://doi.org/10.1038/ncomms7936 DOI: https://doi.org/10.1038/ncomms7936

Macdonald, S.E., & Fenniak, T.E. (2007). Understory plant communities of boreal mixedwood forests in western Canada: natural patterns and response to variable-retention harvesting. Forest Ecology and Management, 242(1), 34-48. https://doi.org/10.1016/j.foreco.2007.01.029 DOI: https://doi.org/10.1016/j.foreco.2007.01.029

Magurran, A.E. (2004). Measuring biological diversity. African journal of aquatic science, 29(2), 285-286. https://doi.org/10.2989/16085910409503825 DOI: https://doi.org/10.2989/16085910409503825

McEwan, R.W., & Muller, R.N. (2011). Dynamics, diversity, and resource gradient relationships in the herbaceous layer of an old-growth Appalachian forest. Plant Ecology, 212, 1179-1191. https://doi.org/10.1007/s11258-011-9896-0 DOI: https://doi.org/10.1007/s11258-011-9896-0

McIntosh, A.C., Macdonald, S.E., & Quideau, S.A. (2016). Understory plant community composition is associated with fine-scale above-and below-ground resource heterogeneity in mature lodgepole pine (Pinus contorta) forests. PloS one, 11(3), e0151436. https://doi.org/10.1371/journal.pone.0151436 DOI: https://doi.org/10.1371/journal.pone.0151436

Narave, H. (1985). La vegetación del cofre de Perote, Veracruz, Mexico. Biótica, 10(1), 35-64.

Nobis, M., & Hunziker, U. (2005). Automatic thresholding for hemispherical canopy-photographs based on edge detection. Agricultural and forest meteorology, 128(3-4), 243-250. https://doi.org/10.1016/j.agrformet.2004.10.002 DOI: https://doi.org/10.1016/j.agrformet.2004.10.002

Oksanen, J. (2013). Vegan: ecological diversity. R project, 368, 1-11.

Plateros-Gastélum, P.A., Reyes-Hernández, V.J., Velázquez-Martínez, A., Hernández-de la Rosa, P., & Campos-Ángeles, G.V. (2018). Disponibilidad de luz bajo dosel en rodales de Abies religiosa. Madera y bosques, 24(3). https://doi.org/https://doi.org/10.21829/myb.2018.2431711 DOI: https://doi.org/10.21829/myb.2018.2431711

Promis, A., Schindler, D., Reif, A., & Cruz, G. (2009). Solar radiation transmission in and around canopy gaps in an uneven-aged Nothofagus betuloides forest. International Journal of Biometeorology, 53, 355-367. https://doi.org/10.1007/s00484-009-0222-7 DOI: https://doi.org/10.1007/s00484-009-0222-7

Reich, P.B., Frelich, L.E., Voldseth, R.A., Bakken, P., & Adair, E.C. (2012). Understorey diversity in southern boreal forests is regulated by productivity and its indirect impacts on resource availability and heterogeneity. Journal of Ecology, 100(2), 539-545. https://doi.org/10.1111/j.1365-2745.2011.01922.x DOI: https://doi.org/10.1111/j.1365-2745.2011.01922.x

Roswell, M., Dushoff, J., & Winfree, R. (2021). A conceptual guide to measuring species diversity. Oikos, 130(3), 321-338. https://doi.org/https://doi.org/10.1111/oik.07202 DOI: https://doi.org/10.1111/oik.07202

Saavedra-Romero, L.D.L., Alvarado-Rosales, D., Patricia, H.R., Martínez-Trinidad, T., Mora-Aguilera, G., & Villa-Castillo, J. (2016). Condición de copa, indicador de salud en árboles urbanos del Bosque San Juan de Aragón, Ciudad de México. Madera y bosques, 22(2), 15-27. https://doi.org/https://doi.org/10.21829/myb.2016.2221321 DOI: https://doi.org/10.21829/myb.2016.2221321

Sánchez-González, A., López-Mata, L., & Granados-Sánchez, D. (2005). Semejanza florística entre los bosques de Abies religiosa (HBK) Cham. & Schltdl. de la Faja Volcánica Transmexicana. Investigaciones geográficas (56), 62-76. DOI: https://doi.org/10.14350/rig.30097

Sánchez G.A., López M.L., & Vibrans, H. (2006). Composición y patrones de distribución geográfica de la flora del bosque de oyamel del Cerro Tláloc, México. Boletín de la Sociedad Botánica de México (79), 67-78. DOI: https://doi.org/10.17129/botsci.1734

Scanga, S.E. (2014). Population dynamics in canopy gaps: nonlinear response to variable light regimes by an understory plant. Plant Ecology, 215(8), 927-935. https://doi.org/10.1007/s11258-014-0344-9 DOI: https://doi.org/10.1007/s11258-014-0344-9

Schleppi, P., & Paquette, A. (2017). Solar radiation in forests: theory for hemispherical photography. Hemispherical photography in forest science: theory, methods, applications, 15-52. DOI: https://doi.org/10.1007/978-94-024-1098-3_2

Seidel, D., Fleck, S., & Leuschner, C. (2012). Analyzing forest canopies with ground-based laser scanning: A comparison with hemispherical photography. Agricultural and Forest Meteorology, 154-155, 1-8. https://doi.org/10.1016/j.agrformet.2011.10.006 DOI: https://doi.org/10.1016/j.agrformet.2011.10.006

Seidel, D., Fleck, S., Leuschner, C., & Hammett, T. (2011). Review of ground-based methods to measure the distribution of biomass in forest canopies. Annals of Forest Science, 68(2), 225-244. https://doi.org/10.1007/s13595-011-0040-z DOI: https://doi.org/10.1007/s13595-011-0040-z

Smith, W.K., & Berry, Z.C. (2013). Sunflecks? Tree physiology, 33(3), 233-237. https://doi.org/10.1093/treephys/tpt005 DOI: https://doi.org/10.1093/treephys/tpt005

Tinya, F., & Ódor, P. (2016). Congruence of the spatial pattern of light and understory vegetation in an old-growth, temperate mixed forest. Forest Ecology and Management, 381, 84-92. https://doi.org/10.1016/j.foreco.2016.09.027 DOI: https://doi.org/10.1016/j.foreco.2016.09.027

Venables, W., & Smith, D. (2017). An Introduction to R. doi: 10.1016.

Villaseñor, J.L. (2018). Diversidad y distribución de la familia Asteraceae en México. Botanical Sciences, 96(2), 332-358. DOI: https://doi.org/10.17129/botsci.1872

Webster, C., Rutter, N., Zahner, F., & Jonas, T. (2016). Measurement of incoming radiation below forest canopies: A comparison of different radiometer configurations. Journal of Hydrometeorology, 17(3), 853-864. https://doi.org/10.1175/JHM-D-15-0125.1 DOI: https://doi.org/10.1175/JHM-D-15-0125.1

Zhang, Y., Chen, J. M., & Miller, J. R. (2005). Determining digital hemispherical photograph exposure for leaf area index estimation. Agricultural and Forest Meteorology, 133(1-4), 166-181. https://doi.org/10.1016/j.agrformet.2005.09.009 DOI: https://doi.org/10.1016/j.agrformet.2005.09.009

Archivos adicionales

Publicado

2023-12-13